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Abstract In order to investigate the hydrodynamic interaction between an interface and a spherical 
particle and its dependence on the type of  interface, it is essential to compute the drag and torque exerted 
on the sphere in the vicinity of  the interface. In this paper, the problem of all slow elementary motions 
(relative translation and rotation) and stationary movement  of  a spherical particle next to a solid, viscous 
or free interface is considered. For low capillary numbers  and different values of  surface dilatational and 
shear viscosities in a curvilinear co-ordinate system of revolution with bicylindrical co-ordinates in meridian 
planes, the problem reduces from three to two dimensions. The model equations and boundary conditions, 
which contain second-order derivatives of  the velocities, t ransform to an equivalent well-defined system 
of second-order partial differential equations which is solved numerically for medium and small values 
of  the dimensionless distance to the interface. Very good agreement with the asymptotic equation for a 
translating sphere close to a solid interface could be achieved. The numerical results reveal in all cases 
the strong influence of  the surface viscosity on the motion of  the solid sphere. For small distances from 
the interface, the drag and torque coefficients change significantly depending on the surface viscosity. 
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1. I N T R O D U C T I O N  

The description of the general rheological behaviour of colloidal materials, consisting of various 
phases in a multiphase flow system, requires information regarding the drag force and torque 
between the phases (Hunter 1987, 1989; Russel et  al. 1989). In dilute systems the individual particle 
motion can be treated independently. In contrast, when the particle concentration is high, the effect 
of hydrodynamic interactions between the spherical particle and the interface on the drag force 
and torque is of considerable importance. Theoretical contributions are limited to low Reynolds 
numbers (mostly for creeping flows) (see review by Davis 1993; papers by Brenner 1973; Brenner 
& Leal 1982 and Uijttewaal et  al. 1993 and books by Kim & Karrila 1991 and Happel & Brenner 
1965), avoiding the difficulties arising from the non-linearity of the equations governing the fluid 
motion at higher velocities. For flow systems containing more than two particles and interfaces, 
the method of reflection is usually used, because it is unlikely that one will find a co-ordinate system 
to satisfy simultaneously all boundary conditions. A great deal of work has been done in obtaining 
first- and higher-order wall corrections for spheres in flows that are bounded by plane or cylindrical 
walls (see Happel & Brenner 1965). Fax6n (1921) developed the method of reflection for a sphere 
translating between two parallel planes in a viscous fluid. However, this method and the solutions 
obtained are not valid for arbitrary distances from the wall (Hetsroni 1982). 

An important step forward was achieved by Stimson & Jefferey (1926), who employed a bipolar 
co-ordinate system to compute the velocity field of a slow-moving fluid flowing around two equal 
sized spherical particles aligned in the flow direction. The status of knowledge in the field was 
summarized and theory and experiment were compared by Goldsmith & Mason (1967). Zhu et  al. 

(1994) performed direct measurements of the drag force on two interacting solid spheres arranged 
in the longitudinal direction for medium Reynolds numbers. Dean & O'Neill (1963) and O'Neill 
(1964) showed that the force and the torque acting on a spherical particle, translating and rotating 

tTo  whom correspondence should be addressed. 

I J M F  2 1 6  M 1169 



1170 K . D .  DANOV e t  al. 

at right angles to their common diameter in a viscous fluid at an arbitrary distance in a plane 
parallel to the solid interface, can be accurately determined. The limiting behaviour when the sphere 
is almost in contact with the wall was obtained rigorously by O'Neill & Stewartson (1967), 
Goldman et al. (1967) and Cooley & O'Neill (1968). The solution is usually expressed as a series, 
but the coefficients of  the various terms cannot be determined except as the solution of a set of  
difference equations. In principle it may therefore now be claimed that the problem of two spheres 
translating slowly through a viscous medium has been solved, apart  from certain limiting situations 
when the series obtained either fails to converge or converges too slowly for numerical evaluation. 
Instead of  the exact solution of the problem these authors derived an asymptotic equation for the 
force and torque and corrected some inaccuracies made in the previous work of Dean & O'Neill 
(1963) and O'Neill (1964). An important  contribution towards the understanding of this problem 
was made by Yang & Leal (1990), who provided analytical results for the motion of a viscous 
Newtonian fluid drop in the presence of a plane, deformable interface in the velocity range for 
which inertial effects can be neglected. 

Most of  the publications in this field are based on the assumption that the interface is solid or 
free. When insoluble or soluble surfactants are present in the solution, the interface shows a viscous 
behaviour. Boussinesq (1913) postulated the existence of a surface viscosity, conceived as the 
two-dimensional equivalent of  the conventional three-dimensional viscosity possessed by bulk-fluid 
phases. For many years, Boussinesq's solution was accepted as the basis for explaining the 
anomalous droplet settling velocity results available in the literature, encouraging the development 
of  various instruments for measuring the surface viscosity and other rheological properties of  
fluid interfaces (Joly 1964). Boussinesq's theory was generalized to material interfaces of  arbitrary 
curvature in the work by Sternling & Scriven (1959), together with Scriven's (1960) paper. The 
effects of Gibbs elasticity and surface viscosity on the drag coefficient of  an emulsion droplet in 
adsorption-controlled Marangoni flow were considered by Levich (1962) and Edwards et al. (1991). 
They showed that, in this case, only the dilatational surface viscosity influences the drag coefficient. 
The effect of Gibbs elasticity is usually neglected when the concentration of insoluble surfactants 
is low, the diffusion of soluble surfactants is fast or the concentration of soluble surfactants is 
greater than the critical micelles concentration. In these cases, we can calculate the flow in the 
frame of Newtonian volume and surface rheology, not taking into account the equations for the 
surfactants mass balance. 

This paper discusses the problem of determining the drag force and torque exerted on a solid 
sphere translating or rotating near a solid, viscous liquid or free interface for low Reynolds and 
capillary numbers. In the case of  a viscous interface, the free surface~xcess pressure tensor 
considers the Boussinesq (1913) and Scriven (1960) constitutive law for a Newtonian interface. 
It is proved in detail in section 3 that the problem for Stokes flow in a co-ordinate system of 
revolution with bicylindrical co-ordinates in the meridian planes can be reduced from three to two 
dimensions. The problem has an analytical solution only for free and solid interfaces. For viscous 
interfaces, the boundary conditions contain second-order derivatives of  the velocity, hence no 
analytical solution exists. Stokes equations and the boundary conditions are transformed to an 
equivalent well-defined system of second-order partial differential equations with known boundary 
conditions using the "two vorticities one velocity" formulation which is convenient for numerical 
computations. In order to illustrate the global interaction between a spherical particle and a viscous 
interface and its dependence on the distance from the interface the drag force and the torque 
coefficients, in addition to the velocity and pressure distributions, are obtained and described in 
section 4 for all elementary motions which are components of the stationary velocity and pressure 
distribution. The numerical results reveal a strong dependence of the motion (rotation and 
translation) of  the solid sphere on the surface viscosity numbers when it is close to the surface. 

2. BASIC E Q U A T I O N S  AND B O U N D A R Y  C O N D I T I O N S  

We consider the stationary motion of a solid; spherical particle in a viscous; incompressible fluid 
next to a plane solid, viscous liquid or free interface. On one side of  the interface the liquid is 
assumed to be unbounded and on the other side a gas or a solid wall is assumed. When remaining 
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Figure 1. Geometry of the system. 

in the frame of low Reynolds number hydrodynamics, the pressure p and the local fluid velocity 
v obey Stokes' equations for creeping motion: 

V . v = 0 ,  q V 2 v = V p  [1] 

where r/ is the dynamic viscosity and V is the volume gradient. Owing to the linearity of the 
equations governing the flow, each particle motion can be presented as a superposition of a 
translational motion along and a rotational motion around an axis parallel to the plane and a 
translation along and a rotation around the axis perpendicular to the plane. The influence of  the 
surface viscosity on the film mobility and drainage rate was investigated by Zapryanov et al. (1983) 
and the problem of a solid, spherical particle rotating around the axis perpendicular to the solid 
wall was solved by O'Neill & Ranger (1979). In this paper we consider the other elementary motions 
of a solid spherical particle with radius a and surface So performing either translational motion 
parallel to the Oy axis or rotation with the angular velocity parallel to the O x  axis (see figure 1). 
The boundary condition on the solid sphere is 

v=v0  at So [2] 

where v 0 is the velocity of  the sphere. The other boundary condition on the interface Si depends 
on the type of interface. For a solid interface the velocity on it is zero and for a free interface the 
friction is zero (see Yang & Leal 1990). For a Newtonian viscous liquid interface S~ (see Scriven 
1960 and Edwards et al. 1991) we consider the Boussinesq-Scriven constitutive law and define the 
surface-excess stress tensor S in the following form (compare, for example, [4.2-15] to [4.2-18] in 
Edwards et al. 1991) 

S = aI~ + (r/d - r/sh)(Vs" Vs)I s + r/sh [(Vsvs)"Is + Is ' (Vsvs)  T ] [3] 

where a is the thermodynamic interfacial tension, which in our case is considered to be constant, 
r/sh and r/d are the interfacial shear and dilatational viscosities at a given point of the interface 
respectively, Is is the unit surface idemfactor, vs is the surface velocity and Vs is the surface gradient 
(see appendices 4.A and 4.B in Edwards et al. 1991 for the definition of the surface operators). 
Equation [3] is the two-dimensional analogue of the comparable expressions for the bulk-phase 
pressure tensor P: 

P = - p l  + q [Vv + (Vv) T] [4] 

In [3] and [4], (Vsvs) T and (Vv) T are the transposes of  the tensors (Vsvs) and (Vv), respectively. In all 
practical circumstances the surface-excess mass density is small compared with the bulk-phase mass 
density and the equation for the interfacial momenum transport reduces to the balance of the forces 
acting on the material interface (see, for example, [4.2-20], [4.2-20a] and [4.2-20b] in Edwards et 
al. 1991): 

V~. S = ns" <P> [5] 
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where n S is the unit normal to the viscous liquid interface and ( P )  is the jump of the volume stress 
tensor P. In addition we must also take into account the usual kinematic boundary condition. 

The resultant force F, due to the stress, exerted by the surrounding fluid on the surface of the 
solid spherical particle So and the torque M experienced by the body surface are (see Happel  & 
Brenner 1965) 

F = ~  P ' n d S 0 ,  M = f s  ( r 0 × P ) ' n d S 0  [6] 
0 0 

where r0 is the position vector of  a point relative to an origin at the centre of  the sphere (see figure 1) 
and n is the vector of  the running unit normal to the particle surface So. The problem under 
consideration at small Reynolds numbers is linear for a solid interface. For free and viscous 
interfaces the boundary conditions [3]-[5] depend on the capillary number C = rlV,/a,  where V, 
is the characteristic velocity of the relative particle motion for the translational motion and coa for 
the sphere rotating with angular velocity co. Usually this number is small for many practical 
systems. Therefore, it seems to be justified that from now on we can consider the case where C ~ 0 
with the assumption that the interface at z = 0  remains planar. In this case, the boundary 
conditions can be linearized. Then the interactions between a particle and an interface are additive 
and the stationary particle motion in the liquid flow can be presented as a superposition of 
translational and rotational elementary motions. Hence the hydrodynamic drag force and torque 
of  a moving particle are counterbalanced by those connected with the external forces: 

F m + F r + F b = 0,  Mm + M r  = 0 [7] 

where Fro, F r and M m ,  M r are, respectively, the drag force and the torque of translation and rotation 
and F b is the external force (for example, buoyancy force parallel to the non-disturbed surface). 

3. M A T H E M A T I C A L  M O D E L  OF T H E  P R O B L E M  

The system of [1] and boundary conditions [2]-[5] are difficult to compute directly numerically 
using the velocity-pressure formulation or the vorticity formulation. The difficulties are connected 
with the specific form of the equations and were discussed by Fletcher (1991a, b). Here we shall 
transform the problem into the equivalent well-defined system of second-order partial differential 
equations with known boundary conditions in a rectangular region, which is convenient for 
numerical investigations. 

We denote by Oxyz a system of Cartesian co-ordinates, ~o is a meridian angle, any plane for 
which q~ is constant is a meridian plane and r and z are, respectively, radial and vertical co-ordinates 
in a cylindrical co-ordinate system Or~oz (see figure 1). The region z < 0 is either a solid wall or 
air whereas for z > 0 a liquid phase is assumed. All dimensionless co-ordinates are introduced by 
scaling with the particle radius a. Let x L and x2 be bicylindrical co-ordinates in the meridian planes 
(see figure 2) connected with the Cartesian co-ordinates with the following expressions: 

b sin x2 cos ~p b sin x2 sin q~ b sinh x~ 
, = , z = [ 8 ]  

x - cosh xt - cos x2 Y cosh x~ - cos x2 cosh xt - cos x2 

~ =  const. 

b 0 xl=O r 
Figure  2. Bicyl indrical  co-ord ina tes  _~q and  x 2 in the p lane  O r z .  The circle of  radius  1, co r respond ing  to 

the line x~ = - k ,  represents  the project ion of  the part icle  surface. 
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where the bicylindrical parameter  b and the regions of  the co-ordinates are 

b 2 = ( l + d )  2 - 1 ,  - -k~<xl~<0,  0~<XE~<Tz [9] 

In this co-ordinate system the lines Xl --- constant and x2 = constant are circumferences shown in 
figure 2, the projection of the particle surface on the meridian plane is a co-ordinate line 

1 
xl=--k ,  k =ln(l +d+b) ,  h = ~  (coshxl-cosx2), [10] 

h is the metric coefficient and d is the minimum dimensionless distance between the sphere and the 
interface. 

After eliminating the pressure from the Stokes equations [1], one obtains a general equation for 
the vorticity vector w 

w=½V x v ,  V x V x w = 0  [11] 

All cases considered above have linearized boundary conditions for elementary motions such 
that the solution of  the equations contains only one mode of  a Fourier expansion. Therefore, the 
dimensionless velocity and vorticity components in the given co-ordinate system can be presented 
in the following general form 

V,  
v = V.(Vl sin ¢p, v2 sin q~, v~ cos ~o), w = ab- (Wl cos q~, w2 cos q~, w~ sin q~) [12] 

The components  of  the velocity in the meridian plane are connected with the components of  the 
vorticity in this plane as follows: 

2r h ~ 2r 
vi=h (rv~)+~w2, v2 = 8x2(rv~)-ffw' [13] 

The boundary conditions [3]-[5] contain second-order derivatives of  the velocity which make the 
computat ion of  the problem more complicated. We use the two vorticities Wl and w2--one velocity 
v~ formulation of  the problem. With the abbreviations 

sinh x I cosh x~ cos x2 - 1 sin x 2 
= , A2 A3 -- , 

A~ cosh x~ - cos x2 sin x2 (cosh Xl - cos x2) ' cosh Xl - cos x2 

we can write from [1], [12] and [13] the equation of continuity in the following form 

OZv~o 82v~ 0v~ 0v~ 2 0Wz 2 0Wl 6AI 2 
Ox~ +~x~+3Al~xl+3A2~x2+bhOx, bhOx2+b-hW2--b-h (2A2-A3)w'=O [14] 

After substituting [12] into [11], we can derive a system of  second-order partial differential 
equations for the components of  the vorticity vector. It is not necessary to compute the component  
perpendicular to the meridian plane, because it is not included in [13]. Hence, 

02WI 0 2 w I  O w  I O w  I (~w 2 
Ox~ + Ox-~2 + 3A'-~xl + A2 ~x2 - 2A3 ~xl + (A~- A~-  A~)wI - 3AIA3w2=O' 

02w2 02w2 0w2 , 0w2 
0x~- + ~ + A, ~xj  + 3A2 ~x2 + (1 - 3A ~)w2 

0Wl 8Wl 
+ 2(A2+ A3)~xl + ZAI~x2+ AI(A3+4A2)w,=O. [15] 

Let us transform the boundary conditions of  the problem for the defined functions. For the 
case of  a solid spherical particle translating with constant relative velocity in the Oy direction, the 
boundary conditions [2] for the dimensionless meridian velocity component and [2] and [13] for 
the dimensionless vorticity components at the surface So read 

2 Ov~ 
v ~ = l ,  Wl=0,  7~w2+~Zy_ = 0  at x l=- -k  [16] 

O/'/ UJ¢ l 
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For a sphere rotating with constant angular velocity parallel to the Ox axis, similar boundary 
conditions can be written in the following form 

2 ~?v~ 
v ~ = l + d - z ,  wt=b2hAiA3, bh WZ+ ?,x~=bA2A3 at x t = - k  [17] 

At infinity the values of the two vorticities w~ and w2 and the velocity v~ go to zero. For all types 
of interfaces (solid, free and viscous) the linearized kinematic boundary condition (the normal 
component of the velocity is equal to zero) for our computation yields 

2 0v~ 
b~W2+~XTXl=0 at xL=0.  [18] 

Considering the problem when the sphere is close to the solid interface, the velocity on it and the 
first component of the vorticity are zero. For a free interface the friction is neglected and the normal 
derivatives of the meridian component of the velocity and the first component of the vorticity are 
zero on it. For  a viscous interface, the tangential components of the linearized stress boundary 
conditions [3]-[5] using the definitions in [12] and [13] and [14] can be reduced to the following 
system of second-order partial differential equations for the velocity component v~ and vorticity 
component wj at the interface xj = 0: 

__c~v~=(K+ ~ )0v~l 2K0w, 4(K+E) b 2% 
Ox, E)hL~..,2+(A'+3A~- 0.v2J b 0x~_ ' 

0w, [ c ~ 2 w ,  OW,_A~Wl]+A3w2 [19] 
~x~ - E h  6~Tx~ + (A2 + A3) ox~ 

where K = qd/rla and E = rl~h/qa are the dilatational and the shear surface viscosity number, 
respectively. When the surface viscosity numbers are zero, one obtains from [19] the well-known 
conditions for the free interface. However, the usual definition of the surface viscosity numbers 
cannot give the correct description of  the hydrodynamic interaction close to the liquid interface, 
because in [19] the surface viscosity numbers are divided by the bicylindrical parameter b, and this 
parameter is several orders of magnitude smaller than 1 when the dimensionless distance to the 
interface is very small. From [14] and [15] one can derive the asymptotic behaviour of the meridian 
component of the velocity and the components of vorticity on the axis of revolution: 

0v~=0,  w t = 0 ,  0w2=0 at x : = 0  and x 2 = ~  [20] 
0x2 0x2 

Using the definitions [12] and [13], one can compute the physical components of the velocity. 
Finally, the pressure is derived from [1] in the meridian plane using [12] and [13] for the velocity 

 .2r o rWl  ± ( > l l  
P =  a vsin~p' q=zrnL~x, k h } - P : x , \ h J ]  [21] 

After substituting [12] and [21] into [4] and [6], we could prove that in our case only the y 
component of the drag force and the x component of the torque exerted by the surrounding fluid 
were non-zero. The general forms of these are 

F~. = fz~rlaV,, M,. = m l ~ q a 2 V ,  [22] 

where the dimensionless drag coefficient f and the dimensionless torque coefficient m are 
represented by the following expressions: 

fo~{ dr [ ~ (  Or)]Ov~, 2he ar Orwl) 
f = f 0 +  -r~Txlq +r ! -  rh2~2x2 ,2xi b 0x2~x~xl~ dx2' 

m = m0 + ~ + r 2 - -  dx2 [23] 
ax2 ax,) 
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In [23] the additional coefficients f0 and m0 are zero for a translating sphere. For a rotating sphere 
they have an analytical form: 

fo ~b 2 sin 3 x2(cosh k cos x2 - 1) (4 sinh: k + cosh k cos x2 - 1) dx2, 
f0 = (cosh k - cos x2) 5 

j '~ b 2 sin 3 x2 
m0 = (1 - 2 sinh 2 k - cosh k cos x2) dx2 [24] 

0 (cosh k - cos x2) 4 

The normal component  of  the linearized stress boundary conditions [3] [5] in the cases of  
free and viscous interfaces gives the equation for the first Fourier mode deviation of the shape S~. 
The disturbances of  the surface shape are proportional to the capillary number C and in our 
case the effect of  the deformation of the interface is of  second order. In fact, if the sphere is very 
close to the interface, e.g. about  0.1 # m  or less, then the Van der Waals, electrostatic, steric, etc., 
interactions are more important  than hydrodynamic interactions (Danov et al. 1993) and the 
motion of the spherical particle depends on them, the deformation of the interface cannot be 
neglected and the problem is non-linear and very difficult to solve numerically. 

The numerical investigation of the problem considered here is also very complex because 
boundary condition [19] contains the second derivative of  the meridian component  of  the velocity 
and of  the first component  of  the vorticity. However, different numerical methods for solving [14] 
and [15] with the boundary conditions [16]-[18] and [20] can be used (Brebbia 1978; Fletcher 1984, 
1991a, b). We used the modified alternating direction implicit method proposed by Danov et al. 
(1994) for a similar problem, which gives the possibility of  computing with second-order implicit 
time and space variable interpolations. 

4. N U M E R I C A L  R E S U L T S  A N D  D I S C U S S I O N S  

4. I. Velocity and pressure distribution 

In order to illustrate the influence of the hydrodynamic interactions between a sphere and an 
interface on the global velocity and pressure distribution and their dependence on the type interface 
(solid, viscous or free) and on the dimensionless distance from the interface, we computed the flow 
field for a translating and a rotating sphere. In figure 3 the numerical results obtained for the 
velocity field in the vicinity of  a spherical particle in the plane x = 0 are shown. The sphere 
translates with a velocity of  1 at distance 1 from the interface, which is located at z = 0. One can 
see that changing the viscosity of  the interface from low viscous [figure 3(a)] to solid [figure 3(b)], 
not only changes the boundary layer close to the interface but also affects the whole flow field 
around the sphere. The corresponding pressure distributions are plotted in figure 4(a) and (b). The 
isobars illustrate the anti-symmetric pressure distribution in the plane x = 0 (see [21]). The pressure 
maximum develops just below the equatorial plane (z = 2) when the interface is of  low viscosity. 
With increasing surface viscosity numbers it moves in the direction of the interface and the 
magnitude of the pressure gradient and the absolute values of  the pressure increase considerably. 
By comparing figure 4(a) and (b) one can also see that the pressure acting on the interface rises 
significantly with increasing interface viscosity. In the region above the sphere, the pressure 
gradients are less pronounced and, close to the z-axis, the pressure and the velocity distribution 
are comparable to the Stokes solution. In order to illustrate the influence of the distance of the 
sphere from the surface, the pressure distribution on the viscous interface (z = 0) is plotted in 
figure 5(a) (low viscous interface) and (b) (highly viscous interface) for a distance of 0.01. 

The velocity distribution in the plane x = 0 for a sphere rotating near the low viscous or 
solid interface is shown in figure 6(a) and (b), respectively. In both cases, the disturbance of the 
fluid through the rotating movement  is restricted to the area close to the sphere and the influence 
of  the solid interface on the motion is less significant. The flow field above the sphere close to 
the z-axis is almost identical with Kirchhoff 's solution. The corresponding isobars are shown in 
figure 7(a) and (b). The behaviour of  the pressure distribution is similar to that in the previous case, 
but the absolute values of  the pressure are about  half. Also, the pressure distribution on the 
interface for small distances is different. The numerical results obtained for a low viscous interface 
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Figure 3. Velocity field for a spherical particle translating in the plane x = 0 for dimensionle 
distance 1 in the cases of: (a) low viscous interface and (b) solid interface. 
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d is tance  1 in the cases of: (a) low viscous interface and  (b) solid interface. 
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Figure 6. Velocity field for a spherical particle rotating in the plane x = 0 for dimensionless distance 1 
in the cases of: (a) low viscous interface and (b) solid interface. 



1180 K . D .  D A N O V  et al. 

[q 

(a) 

- 5  
5 

4 - 

3 - 

2 - 

1 - 

0 
- 5  

- 4  - 3  - 2  - t  0 1 2 3 

I I I I I I I 

P 
Q 

, ,( I, 
- 4  - 3  - 2  - 1  0 1 B 3 

Y 

4 

I 

4 

(b) 
- 5  - 4  - 3  - 2  - 1. 0 1 2 3 4 

5 I I I I [ I I I I 

I 
o 

4 - b 

N 

2 - 

-4 

- 3 

- 2 

- 1 

0 
- 5  - 4  - 3  - 2  - 1 0 1 2 3 4 5 

Y 
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d is tance  1 in the cases of: (a) low viscous interface and (b) solid interface. 
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and a distance of  0.01 between the sphere and the interface are illustrated in figure 8. Here the 
influence of  the surface viscosity is not so important. For  example, if the surface viscosity number 
increases from 1 to 100, the maximum dimensionless pressure increases from 17.3 to 17.8. 

Clearly, the pressure induced by the moving sphere will lead to a deformation of the interface, 
which is plotted in figure 9(a) and (b) for the translating and the rotating sphere close to a highly 
viscous interface, respectively. In both cases the absolute value of the disturbance is proportional 
to the capillary number. In these plots the deformation is enlarged, however, in order to give a 
better impression of the shape of the deformed surface. 

4.2. Drag and torque coefficients 

For a detailed investigation of the influence of the type of interface on the hydrodynamic 
interaction and the drag and torque coefficients as defined by [23] and [24] we performed two 
different types of  analysis: (a) for solid, free and viscous interfaces corresponding to three typical 
values of  the surface viscosity number we computed the dependence of the drag and torque 
coefficients on the distance from the interface for distances from 0.001 to 1; (b) for three values 
of the distance 0.01, 0.1 and 1.0 we varied the surface viscosity numbers from 0.0 (the case of a 
free interface) to 100.0 (the case of a highly viscous interface). The numerical results are illustrated 
in figures 10-13. 

The dependences of the drag and torque coefficient on the distance from the interface for a 
translating sphere are shown in figure 10(a) and (b), respectively. Curve (a) represents our numerical 
results for a solid interface. Curve (b) represents the asymptotic equations of  O'Neill & Stewartson 
(1967): 

1 43 2 + O(d)] [25] 



1182 K . D .  D A N O V  et  al. 

( a )  

,4 

.q 

(b) 

Figure  9. Typica l  d i s turbances  of  the viscous interface contours :  (a) t rans la t ing  sphere and  (b) ro ta t ing  
sphere. 
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Curves (c), (d) and (e) are computed for surface viscosity numbers of 100.0, 10.0 and 1.0 and curve 
(f) is for a free interface. The agreement with the asymptotic equations of O'Neill & Stewartson 
(1967) is excellent. The influence of the surface viscosity and hence the presence of surfactants 
is most significant when the sphere is very close to the interface. For solid and highly viscous 
interfaces, the interactions increase very strongly in this area. The drag coefficient changes more 
than 6-fold for dimensionless distances from 1.0 to 0.001. For a medium viscous interface the drag 
increases very slowly in this area and, in principle, the sphere starts to interact with them only when 
very close to them, from d ~ 0.01. In contrast, for low viscous and free interfaces [curves (e) and (f)] 
the drag coefficient remains almost constant or drops when the sphere approaches the surface. 
These significant differences in the basic behaviour of  the curves can best be understood by looking 
at the pressure plots in figure 4(a) and (b). Apparently, varying the surface viscosity numbers not 
only leads to changes in the interface properties but also influences the whole flow field up to a 
certain distance from the surface. At higher viscosity numbers very steep velocity and pressure 
gradients build up in the vicinity of the sphere and it is this boundary layer which is responsible 
for the steep increase in the drag coefficient. However, as the absolute value of f exceeds the value 
of Stokes solution ( f  = 6) even at larger distances, a global influence of the surface viscosity is 
noticeable. For low surface viscosities, almost no boundary layer develops around the sphere and 
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hence, no particular effects can be perceived when the sphere approaches the interface. However, 
as the liquid film between the sphere and the interface becomes thinner, less fluid is moved by the 
sphere and therefore the absolute value of  the drag coefficient drops below the Stokes solution. 
For  K = E = I [curve (e)] the two effects balance each other  at f ~ 6. 

The torque coefficient is plot ted in figure 10(b) for the same range of  surface viscosity numbers  
as in figure 10(a). Again,  the agreement  with the asymptot ic  solution o f  O'Neil l  & Stewartson (1967) 
is excellent. One can see that  the sign o f  the torque coefficient is different for low and high viscosity 
numbers ,  respectively. This means that  a sphere would tend to rotate in different directions 
depending on the magni tude  of  the surface viscosity. Obviously the friction with the bulk is larger 
than the friction with the interface for low surface viscosities, and vice versa. 

The drag and torque coefficients for a rotat ing sphere are presented in figure 1 l(a) and (b) for 
(a) a solid surface, (b) K = E = 100, (c) K = E = 10 and (d) K = E = 1. F rom figure 1 l(a), it can 
be deduced that  the rotat ing sphere would tend to move in one direction for high viscosity numbers  
[curves (a) and (b)] and in the opposite direction for low surface viscosity numbers.  At  a viscosity 
number  o f  about  10 [curve (c)], the rotat ing sphere would not  translate through the liquid. When 
the spherical particle approaches  a highly viscous interface, the force acting on it increases by an 
order of  magni tude  in the range under  consideration. The torque coefficient, plotted in figure 11 (b), 
starts 
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from an absolute value of about  8 which corresponds to Kirchhoff 's solution, and reaches very high 
values when the sphere rotates close to the wall. This effect is almost as pronounced for moderate 
as for high surface viscosity numbers. 

In figure 12(a), the drag coefficient of  a sphere translating parallel to the interface is plotted as 
a function of the surface viscosity numbers for three different distances from the interface, (a) 0.01, 
(b) 0.1 and (c) 1.0. From this plot, a critical surface viscosity number of  about  2 can be identified 
from the intersection point of  the three curves. At this point the drag coefficient has the value of 
the Stokes solution. On increasing the surface viscosity number above this critical value, the 
influence of the surface viscosity prevails. In contrast, for lower values, the drag reduction due to 
the vanishing amout  of  liquid between the sphere and the interface is the governing effect. On 
considering the behaviour of  the torque coefficient [figure 12(b)], the effect is similar. However, the 
curves do not intersect at m = 0 as one would expect from the previous plot. 

For  a rotating sphere, the critical viscosity number at which the nature of  the governing effect 
changes [see figure 13(a) and (b)] changes from the drag to the torque coefficient. 

One has to remember that for elementary motions, which are considered here, the translating 
sphere is not allowed to rotate and the rotating sphere is not allowed to translate. Hence, the torque 
coefficient of  the translating sphere and the drag coefficient of  the rotating sphere are secondary 
effects. This explains why the point or range of intersection is not exactly at m = 0 and f = 0, 
respectively. 

4,3. Stationary motion 

In the presence of an external force acting parallel to the y-axis, the stationary motion of the 
spherical particle is a superposition of the two elementary motions: the translational motion with 
a drag coefficient fm, a torque coefficient m m and a stationary translational velocity Vst and a 
rotation with the angular velocity parallel to the x-axis with a drag coefficientfr, a torque coefficient 
mr and a stationary angular velocity ~%. Then [7] can be written in the following form: 

frn Vst + f r a c o ~ t  = - -  6 Vstokes, m m Vst + m r a ~ s t  = 0 [26] 

From [26] we computed the stationary values of  the translational and angular velocity of  the sphere 
close to the different types of  interfaces. These velocities are normalized by the Stokes velocity for 
the unbounded fluid and they are shown in figure 14(a) and (b), respectively, as a function of the 
dimensionless distance for different types of  surfaces: (a) solid, (b) K = E = 100, (c) K = E = 10 
and (d) K -- E = 1. The stationary velocity of  the sphere is less than the Stokes value for solid 
and highly viscous interfaces and it decreases very significantly when the distance from the interface 
decreases. The motion for d = 0.001 is about  four times slower than that for d = 1.0. The effect 
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is the opposite for low viscous and free interfaces. In these cases, the sphere moves faster near the 
boundary than in the unlimited fluid. The stationary rotation of a sphere close to the solid or highly 
viscous interface is in the positive direction [see figure 14(b), curves (a) and (b)]. For medium surface 
viscosity numbers, the sphere does not rotate [curve (c)] and for low viscous interfaces the friction 
with the outer fluid is stronger than the interaction with the boundaries and the direction of  the 
rotation has the opposite sign [curve (d)]. 

5. C O N C L U S I O N S  

The model presented here for computing drag force and torque makes it possible to investigate 
the influence of  the surface viscosity on the motion of a solid spherical particle close to a viscous 
interface. It can be used for small Reynolds and capillary numbers for solid, free and Newtonian 
viscous interfaces obeying the Boussinesq-Scriven constitutive law. Our computations revealed that 
the presence of surfactants can increase the drag exerted on a sphere translating close to a viscous 
interface to a value up to four times higher than the Stokes solution. Likewise, the torque acting 
on a rotating sphere can be considerably larger than for the case of  an interface which is free of  
surfactants. The increase in drag and torque is partly counterbalanced by the fact that the friction 
reduces the more, the less liquid is present between the sphere and the interface. A critical value 
of  about  2 for the surface viscosity numbers could be identified at which the nature of  the governing 
effect changes. The increase in drag due to the modified surface conditions can slow the motion 
of  a sphere considerably in comparison with a sphere moving in the vicinity of  an interface 
which is free of  surfactants. Depending on the properties of  the interface, the spherical particle can 
rotate in either direction or not rotate at all, when travelling close to the surface, owing to the 
above-mentioned counteracting effects. 
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